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Abstract 

Using WAGS for the arcs of recirculating accelerators 
has the potential to achieve significant cost savings over a 
multiple-arc design. However, no FFAG arc will have the 
same path length over its entire energy range. This leads to 
problems with synchronizing high-frequency RF with the 
beam on each pass. It has been demonstrated [l] that in 
fact a reference particle can be accelerated in such a system 
for an arbitrary number of turns, although the amount of 
linac required for a given energy gain never falls below a 
certain nonzero value for a larger number of turns. Here 
we examine that system in more generality, and begin to 
address longitudinal phase space acceptance. 

1 LATTICE DESCRIPTION 

For the purposes of this paper, a recirculating accelerator 
consists of an alternating sequence of identical linacs and 
arcs. The arcs are identical in that each has the same path 
length as a function of energy. The linacs are identical in 
that they all have the same voltage and the same phase. By 
"the same phase," I first mean that the phase of the RF does 
not change from one turn to the next. Second, if there are 
M linacs in the recirculating accelerator, the phase of one 
linac differs from that of the previous linac by 2nA/M for 
some fixed integer k. 

There are two extremes in this design: one is the race- 
track design, where there are two long parallel linacs con- 
nected by arcs; the opposite extreme is a distributed RF sys- 
tem, where one has a sequence of short arcs with a single 
RF cavity between them. The racetrack design allows one 
to attempt to suppress dispersion in the linacs, eliminating 
longitudinal-transverse coupling. It is generally difficult to 
suppress dispersion over a large energy range, and in ad- 
dition, the dispersion suppression may reduce the dynamic 
aperture of the system. The distributed RF system allows 
longitudinal-transverse coupling, but maintains a high de- 
gree of symmetry, in principle giving a good dynamic aper- 
ture. The longitudinal-transverse coupling may not be so 
important, however, since we are on-crest, and the energy 
gain does not vary so strongly with time-of-flight (that vari- 
ation is what causes the longitudinal-transverse coupling). 

The path length in an FFAG arc is often well approxi- 
mated as a quadratic function of energy (see Fig. 1 for an 
example). It is desirable to minimize the total variation in 
the path length over the desired energy range, and so one 
generally adjusts the lattice design to place the minimum 
of the parabola in the center of the energy range of the arc. 
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Figure 1: Path length as a function of energy for a single 
6.5 m WAG cell [2], calculated using COSY INFINITY 
[3]. Path length is given as a fraction of a 200 MHz RF 
period. The solid line is the exact path length variation, the 
dashed line is a quadratic approximation. 

Thus, the path length as a function of energy takes the form 

AT should vary very little as TO is adjusted over a small 
range. Adjusting TO changes the energies for which the par- 
ticle will see the same phase betweeen subsequent linacs. 
To minimize the relative arc lengthening required to ad- 
just To, one can also adjust A described above (the relative 
phase between linacs). 

Time-of-flight variation with energy is ignored in the 
linacs. Considering the relatively large energies that these 
recirculating accelerators are designed for, it is a very good 
approximation to distribute any path length variation with 
energy in the linacs into the adjacent arcs. 

2 EQUATIONS OF MOTION 
The equations giving the energy and time-of-flight at the 

entrance and exit of the linacs are 

E,+l = E, + VC(WT,) (2) 
T,+I = T~ + AT [u(En+1/AE) - '1101 . (3) 

E, is the energy after the nth pass through a linac, T,-I 

is the time-of-flight relative to the crest in the nth linac 
pass, w is the angular RF frequency, and AE is the de- 
sired energy gain. c(x)  is a 2n periodic function whose 
maximum absolute value is 1 and whose integral over one 
period is 0, representing the amplitude of the voltage as a 



function of phase. V is the maximum energy gained in the 
linac. AT[u(p) - uo] is the time of flight in an arc as a 
function of energy (it is convenient to define u(p) so that 
the difference between its maximum and minimum is 1). 
For the path length variation (l), u(p) = 4(p - 1/2)2 and 
uoAT = TO. For a single RF frequency, e($) = cos(x). 
Changing coordinates to x, = wr, and p ,  = EJAE, 
(2-3) become 

P,+l = P, + wc(xn) 
%+l = 5, + Aq5[U(Pn+l) - uo] 

(4) 
(5 )  

where v = V/AE and Aq5 = wAT. 
Say we want to accelerate from E,, to Emin in N turns. 

Then po = 0 and PN = 1. The problem that we wish 
to solve is given these endpoint conditions, minimize v by 
varying 20, the phase at which you enter the first linac, and 
uo . This solution will depend only on Aq5 and N.  

2.1 Continuous Approximation 
Make a continuous approximation to Eqs. (4-5) [I]: 

where w = V/(AEwAT) and t = nwAT. The discrete 
problem is re-formulated to be that w is minimized sub- 
ject to the constraints that p(0) = 0 and p(NwAT) = 1 
by varying uo and x(0). This solution depends only on 
NwAT. Thus, if the continuous approximation approxi- 
mates the discrete system well, then V will be AEwAT 
times a quantity depending only on Nw AT. 

One can eliminate < from (6) and integrate to get 

w[44 - S(.O)l = U(P) - UOP, (7) 

where 

~ ( x )  = jo ~ ( z )  dz V(p) = j0- u(z)  dz. (8) 

From this we can show that 

SUP P(P) - UOPl - inf [WP) - UOPI 
P€ [O 1 11 

. (9) 
P€[OJl 

SUP[S(41 - i p ( 4 l  

Minimizing the right hand side over uo demonstrates that 
there is a nonzero lower bound on w . For example, for the 
path length variation (l), the numerator of (9) is 1/12, and 
is reached when uo = 1/4. When e(.) = cos(x), the de- 
nominator is 2, and thus w is at least 1/24. Setting w to the 
value computed on the right-hand side of (9) (even without 
minimizing with respect to uo) and xo such that s(x0) is 
the minimum value of s (-7~/2 when e(.) = cosx), then 
if U(p) - uop reaches an extremum at an interior value of 
p = p l ,  then z = 2 1  and p = p1 are a fixed point of 
(6), where z = x1 solves (7) when p = pl (u and c are 
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Figure 2: Phase as a function of linac pass when Aq5 = 1 
and N = 50. 

assumed to be differentiable). This fixed point must be un- 
stable. Thus, it takes an infinite amount of time to reach 
that fixed point. Hence, the lower bound on w is the limit 
of the solution for w as NwAT + 00. As we approach 
that limit, for w minimized over 20, w approaches the right 
hand side of (9) from above, and 20 approaches a value 
which minimizes s(x). 

This helps us understand the behavior in the discrete 
case: for large N ,  V will not go to zero but will ap- 
proach a nonzero value which is proporlional to AEwAT. 
The value of V/(AEwAT) is roughly only a function of 
Nw AT. For large N, the bunch will spend many turns at a 
point where e(.) is nearly zero, gaining very little energy. 
All these statements are weakly dependent on what wAT 
is, since the continuous approximation is not exact. 

In the case of the distributed RF system, Aq5 is small 
and N is very large, and the discrete equations are a very 
good approximation to the continuous ones. For a racetrack 
system, however, it is far from clear that the approximation 
is good. Since wAT is relatively large, the change of x in 
one step can be large, making it questionable whether the 
continuous approximation is really very good. However, 
we will subsequently see that for a large number of turns, a 
large fraction of the steps occur at points where the change 
in z, is small, and z, is large and therefore the change in 
p ,  is also small. The continuous approximation thus turns 
out to give the correct results for large numbers of turns 
both qualitatively and nearly quantitatively as well. 

3 EXAMPLE 
We now find the minimum-w solution of E q s .  (4-5) for 

Aq5 = 1. This is a relatively large phase swing: remem- 
ber that the phase errors accumulate, and so after only 4 
steps with this phase error, one would certainly be decel- 
erating. This example is more appropriate for a racetrack 
configuration: the phase swing per arc would be orders of 
magnitude smaller for a distributed RF system (but corre- 
spondingly more linac passes would bgrequired). 
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Figure 3: Linac voltage versus the number of linac passes. 
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Figure 4: Initial phase versus the number of linac passes. 

If one makes 50 linac passes for this system and per- 
forms the aforementioned optimization, the phase as a 
function of turn number is shown in Fig. 2. Note that the 
reference particle crosses the crest three times; this is re- 
lated to the parabolic shape of the path length. The particle 
spends most of its time at the two turning points in phase 
(turns 8-1 8 and 32-42); these are the points where the path 
length error is near zero. Due to the large phase at this 
point, the particle is not gaining very much energy, and so 
remains at the point where the path length is near zero for 
a long time. This is what allows the particle can spend an 
arbitrary number of turns in this system. 

Figure 3 shows the voltage as a function of the number 
of linac passes, and Fig. 4 shows xo. For large numbers 
of turns, these (including $0, not shown) do appear to be 
approching the large N limits given above. While it is not 
clear that 50 -+ -n/2 in Fig. 4, from Fig. 2, one can see 
that the maximum phase swing is slightly larger than -20. 
The fact that A$ is large causes this difference from the 
continuous approximation. It is the regime near the turning 
points in phase that approaches the continuous approxima- 
tion. It turns out that the voltage limit as N + co is very 
slightly less than what is found in the continuous approxi- 
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Figure 5: Initial phase space that is accepted in a 8 linac 
pass system. Each color represents a band of zEO.01 in p ~ .  
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Figure 6: Initial phase space that is accepted in a 24 linac 
pass system. 

mation; the difference is also due to the the finite A$. 
Finally, Figs. 5 and 6 demonstrate how the acceptance 

varies with the number of turns. For fewer turns, a large 
region of phase space is accepted; what one sees at 8 linac 
passes is very close to what one expects from on-crest ac- 
celeration. For a large number of linac passes (24 here), 
most everything that is accepted ends up within a small 
band of the reference momentum at the final energy. In 
fact, while it appears that there is a smaller total accep- 
tance for more turns, the phase space area ending up within 
a small energy band at the end is mmuch larger for more 
turns. The analysis of acceptance is still very preliminary, 
and must be studied more thoroughly. 
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